Color tunable low cost transparent heat reflector using copper and titanium oxide for energy saving application
نویسندگان
چکیده
Multilayer coating structure comprising a copper (Cu) layer sandwiched between titanium dioxide (TiO2) were demonstrated as a transparent heat reflecting (THR) coating on glass for energy-saving window application. The main highlight is the utilization of Cu, a low-cost material, in-lieu of silver which is widely used in current commercial heat reflecting coating on glass. Color tunable transparent heat reflecting coating was realized through the design of multilayer structure and process optimization. The impact of thermal treatment on the overall performance of sputter deposited TiO2/Cu/TiO2 multilayer thin film on glass substrate is investigated in detail. Significant enhancement of transmittance in the visible range and reflectance in the infra-red (IR) region has been observed after thermal treatment of TiO2/Cu/TiO2 multilayer thin film at 500 °C due to the improvement of crystal quality of TiO2. Highest visible transmittance of 90% and IR reflectance of 85% at a wavelength of 1200 nm are demonstrated for the TiO2/Cu/TiO2 multilayer thin film after annealing at 500 °C. Performance of TiO2/Cu/TiO2 heat reflector coating decreases after thermal treatment at 600 °C. The wear performance of the TiO2/Cu/TiO2 multilayer structure has been evaluated through scratch hardness test. The present work shows promising characteristics of Cu-based THR coating for energy-saving building industry.
منابع مشابه
Saving Energy by Exergetic Analysis of MTP Process Refrigeration System
The exergetic analysis is a tool that has been used successfully in many studies aiming a more rational energy consumption to reduce the cost of processes. With this analysis, it is possible to perform an evaluation of the overall process, locating and quantifying the degradation of exergy. This paper applies exergy approach for analyzing the heat exchanger network design and refrigeration of M...
متن کاملFabrication of Graphene Oxide Thin Films on Transparent Substrate via a Low-Voltage Electrodeposion Technique
Graphene oxide (GO) thin films were simply deposited on fluorine doped tin oxide (FTO) substrate via a low-voltage electrodeposition. The GO and GO thin films were characterized by Zeta Potential, X-ray diffraction, Ultraviolet-Visible spectroscopy, atomic force microscopy, Fourier transform infrared spectroscopy, field emission scanning electron microscopy and energy dispersive X-ray spectrosc...
متن کاملEnergy Management and Process Improvement of Methanol Production
A heat exchanger network (HEN) for the process of methanol synthesis has been studied by combination of pinch design method and the application of “Twisted Tube” heat exchanger units as a new technology. The HEN is reconstructed based on the full utilization of maximum allowable pressure drops for the process hot and cold streams. An algorithm is developed to generate design procedure for twist...
متن کاملElectrically tunable terahertz metamaterials with embedded large-area transparent thin-film transistor arrays
Engineering metamaterials with tunable resonances are of great importance for improving the functionality and flexibility of terahertz (THz) systems. An ongoing challenge in THz science and technology is to create large-area active metamaterials as building blocks to enable efficient and precise control of THz signals. Here, an active metamaterial device based on enhancement-mode transparent am...
متن کاملProgress toward Roll Processing of Solar Reflective Material
The goal of this work is to demonstrate that high performance solar reflective material can be produced in a roll format using vacuum deposition techniques. The material consists of a multilayer thin film stack on a substrate. The essential feature of the film stack is an alumina film several microns thick deposited over a silver film. The alumina film is deposited under high vacuum using a phy...
متن کامل